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           The Structure of River Turbulence 

                   By  Shoitiro  YOKOSI 

                       (Manuscript received Aug. 10. 1967) 

                             Synopsis 

  The turbulent velocity of river flow has not been able to be measured accurately because 
 of the lack of a suitable instrument. This paper describes the results of measurements 

 with propeller-type current meters in the Uji river and the Sosui canal. 
   The turbulence structure of river flow may be characterized by three different  scales  : 

 width of channel B, horizontally, water depth 11, vertically, and furthermore the smallest 
 eddies or Kolmogorov microscale  20. It seems to be expedient to split the spectrum into 

 three regions, because B H.:>,to in a river channel generally. The turbulence characterized 
 by B is large in scale horizontally and quasi-two-dimensional. On the other hand, the 

 turbulence characterized by H is the same as that of usual boundary layer turbulence 
 except in the neighbourhood of a water surface and is three-dimensional. 

   Interesting results obtained from analyses of observed data are as follows. (1) The 
 energy spectral density is described by the well known  'Kolmogorov  -53 power  law' 

 in both horizontal and vertical  turbulence. The values of energy dissipation density which 
 is the only parameter determining properties of the inertial subrange are  su-10-2cm2/see 

 for horizontal turbulence and  ev-10-1cm2  '8ec2 for vertical turbulence. (2) The largest 
 eddies of the horizontal turbulence, caused not by an artificial or natural variation of dis-

 charge but by the geomorphological features of the river channel itself, is of the order 
 of 10 times the width of the channel  longitudinally. and equal to its width laterally.  On 

 the other hand, the length of the largest eddies of the vertical turbulence is about 10 
 times the depth of flow and the width is about  1/10 times of its length. The size of the 

 smallest eddies or Kolmogorov microscale is a little less than  1  mm and most of the 
 turbulence energy comes to be dissipated in the eddies smaller than those of 1 cm in 
 diameter. (3) In the vertical  turbulence. turbulence properties near the bottom are very 

 similar to that of well known wall turbulence. However the intersection region formed 
 between a side wall and free surface or bottom has very complicated properties of 

 turbulence. 

1. Introduction 

 In general, river flow is in a state of turbulence. There is little information 
about turbulence in an open channel flow, although a great deal of knowledge 
of a mean flow has been obtained in the field of hydraulics. The reasons for 
this are assumed to be the lack of development of suitable instruments for 
measuring the turbulent velocity accurately and of serious requirements for 
studying the internal structure of flow.  Al present, problems of hydraulics 
related to turbulence are approached by analogy from the turbulence in the 
atmosphere, wind tunnel or ocean about which there is a great deal of  knowl-
edge". However there is no strong proof that river turbulence is similar to 
turbulence in other fields. Therefore it seems to be impossible to solve the 
problems of river turbulence resulting from the characteristic boundary condi-
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tions of river flow by the direct analogy with turbulence in other fields. The 
most necessary thing to do at present seems to be to accumulate extensive 
knowledge of river turbulence from a large number of observations. This is 
useful in order to throw light on the turbulence structure of river flow in itself 
and some time later, can be related to an investigation of mass transport or 
diffusion phenomena in river flow. 

 From the above viewpoint, fundamental observations of turbulent velocity 
were made using the miniature propeller-type current meter and the ordinary 
electric propeller-type current meter commercially available. The propeller-type 
current meter is generally simple in construction and easy to deal with, more-
over linearity exists between the velocity and revolution of the propeller. The 
defects are low response and the impossibility of measuring the perpendicular 
components of the main flow. This type of current meter was supposed to be 
used originally to estimate mean velocity from the measurement of a long time 
interval. Therefore turbulence measurement by the propeller type current 
meter may be not pertinent. However trouble may be removed by appropriate 
measuring management with the understanding of the limit of application. 

 Recently in foreign countries, measurements of water turbulence using the 

propeller-type current meter have been also  mentioned'-'". A hot-film flowmeter 
is also used for measuring high frequency fluctuations of velocity, but it has 
many defects such as difficulty of stable operation and low  linearity'". An 
electromagnetic flowmeter seems to be inappropriate for turbulence measure-
ment because of its configuration of  sensors'. The use of an ultrasonic flow-
meter which is now considered to have bright prospects has been started in our 

 laboratory'''. 
 In section 2, the general aspect of river turbulence is presented. Because of 

the large ratio of width of flow to depth, the velocity field of river turbulence 
is divided into three  regions  : quasi-two-dimensional horizontal turbulence, three 
dimensional boundary layer turbulence and the transitional region between the 
two. In section 3, results of measurements of turbulence spectra are presented 
with consideration of turbulence energy dissipation. In sections 4 and 5, shapes 
of the largest eddies in horizontal and boundary layer turbulence are discussed 
using cross spectral analysis and moving average. In section 6, several turbu-
lence properties of a boundary layer developed from the bottom and in the corner 
region between a side wall and a free surface. 

 These observations were carried out in the Sosui canal running from Lake 
Biwa to Kyoto and the Uji river. The results obtained are limited to the longitu-
dinal component of flow. However they show a number of interesting facts 
about river turbulence. 

2. General aspect of river turbulence 

 It can be stated that river flow is one of the irreversible processes of energy 
transfer. That is to say, potential energy supplied as a precipitation transformed 
to the energy of mean flow by the gravity force, and the energy supplied con-
tinuously to the largest eddies, whose size is of the order of the characteristic 
dimension of the flow, from the mean flow by the cause of instability is trans-
fered through a cascade of eddies of diminishing size to end in dissipation in
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the smallest eddies. Under the equilibrium condition of such energy processes, 
river flow passes through a river channel and pours into the sea or ocean. On 

the way, there exist many interesting phenomena in the field not only of natural 
science but also of engineering  : sediment transport, diffusion of suspended 

materials, meandering of channel, and so on. 

 For very large Reynolds numbers, eddies of every size from the largest to the 
smallest are present. An important  part in any turbulent flow is played by the 

largest eddies, whose size is of the order of the dimension of the region in which 

the flow takes place. These large eddies have the largest amplitudes. If A is 
the order of magnitude of the size of a given eddy and  v2 the order of magnitude 

of its velocity, the turbulence Reynolds number is defined as 

                                      rA).   R
,—          • (2.1) 

The smaller this number is, the smaller the size of the eddy. For a large 

Reynolds number in the usual sense, the turbulence Reynolds number is also 
large. Large Reynolds numbers are equivalent to small viscosity. It follows 

from this that there is no appreciable dissipation of energy in the large eddies. 
Energy dissipation occurs only with the smallest eddies, whose turbulence Rey-
nolds number is comparable with unity. From the above conception of energy 

dissipation, the order of magnitude of energy dissipation is determined by the 

dimensional arguments. The result is that the dissipation of energy is propor-
tional to the third power of the velocity of the largest eddies and inversely pro-

portional to the size of the largest  eddies. 

 In the region which is called the inertial subrange, in which no production and 
no dissipation take place, the mean energy dissipation  s may be assumed as the 

energy flux which continuously passes from larger to smaller eddies. Hence the 
order of magnitude of the turbulent velocity fluctuation  v, is expressed as 

 (0)1",  (2.2) 

from the dimensional argument (Kolmogorov's law). This is a very important 
result and  4s equivalent to the well known expression for the energy spectral 

density 

 E(k)=  Asu3k-5/3, (2.3) 

where k is the wave number related to the size of the eddies as  k  —27r/  2 and A 

is the universal dimensionless constant, s the mean dissipation of turbulence 
energy per unit time per unit mass of fluid. This relation is valid regardless of 

the kind of fluid in the region of the inertial  subrange  : a region much smaller 
than the size of the largest eddies and much larger than the size of the smallest 
eddies. Needless to say this relation holds in river turbulence. It will become 

evident that the assumption that energy flux s remains constant in a specific 
region of the spectrum of turbulence, is an important feature of the outline 

here considered of the turbulent motions of a fluid. There may obviously be 
turbulent motions in which this condition is not satisfied and where the energy 
supply is not derived solely from the long wave region of the spectrum, but in
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general, from the whole range of wave numbers. For example, river turbulence 
derives some of their energy from the meandering of flow, wake of pier, sand 
waves on the bottom, and so on. The size of the eddies produced by the above 

causes are of the order of magnitude of the size of the causes. 

 Stationary turbulence rarely exists when the ratio of the size of the largest 
eddies to that of the smallest eddies increases. As a result, energy dissipation 

 must be written not as a constant but as a fluctuating quantity. Recently theo-
retical studies of the problem have been  made81. 

 River flow is restricted by the free surface and movable bottom vertically, and 

by the width of channel horizontally. River flow is usually characterized by a 
large ratio of width to water depth, which seems to be the essential difference 

between river turbulence and turbulence in a laboratory flume. The depth H 

and the width B of river flow are of the order of  10' cm and  IW cm, respectively, 
in Japan. Therefore the Reynolds number of river flow is about  10° with the 

depth as a typical dimension and  108 with the width. On the other hand, the 
size of the smallest eddies or Kolmogorov microscale  7o is estimated in section 

3 as being of the order of  10' cm by the following expression, 

 20-1.)2/4  (2.4) 

where  v is the kinematic viscosity and s the parameter of the mean energy dis-

sipation per unit time per unit mass of water. Therefore the range of the  spec-
trum of river turbulence in the horizontal direction is  B  ',10-102 and in the verti-

cal direction  11/20=  10'. The characteristic size of the eddies in river flow may 
be expected to be of the order of  Ao=10-',  11-102 and  B=10' in cm. The rela-

tively large differences between these three values seem to suggest that it is 

expedient to split the range of the spectrum of river turbulence into three  re-

gions : the regions of  20—H, H—B and an intermediate transitional region. It is 
well known that the ratio of the size of the largest eddies to the smallest eddies 
is proportional to the Reynolds number to the power  3/4. If there are no sand 
waves, no obstacles and no meander in a river channel, in each region, there 

exists the so-called inertial subrange, in which no production and no dissipation 

of energy take place and only energy transfer to smaller and smaller eddies 
occurs because of the sufficiently large Reynolds number of the river flow. 

 In the region between  ,10 and  H in the spectrum of river turbulence, the tur-

bulence, is three-dimensional and characterized by the vertical scale H, because 
it is quite  similar to that in an ordinary turbulent boundary layer except near 
a free surface. On the other hand, turbulence in the region between H and B 

is quasi-two-dimensional and characterized by the horizontal scale B. The former 
would be called  'boundary layer  turbulence' or  'vertical  turbulence' and the 
latter  '  horizontal  turbulence  '. The eddies having the lowest wave number in 

each region of the spectrum correspond to the so-called largest eddies. There-
fore the value of energy dissipation e will be different in vertical turbulence 
and horizontal turbulence. The statistical properties of turbulence are assumed 

to be independent in vertical and horizontal turbulence. 
 The energy transfer in the region of horizontal turbulence is in the state of a 

cascade process with  ex and it is supposed that energy may be transmitted to 

vertical turbulence through the transitional region by the action of turbulent
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viscosity 

 yr—Et:I/VP/3.  (2.5) 

 Energy transmitted from horizontal turbulence to vertical turbulence is trans-

fered to smaller and smaller eddies by a cascade process with  et and, at last, 
converted by the action of the viscosity v into heat. 

 Horizontal turbulence contributes dominantly to, for example, the horizontal 
and large scale of mixing of suspended or floating matter, because the scale of 

turbulence is very much larger horizontally than that of vertical turbulence. In 
the transitional region between the spectra of vertical and horizontal turbulence, 
the mechanism of energy transfer is very complicated. The turbulence motion 

of the scale of the largest eddies of vertical turbulence seems to contribute 

essentially to the dynamic behaviour of  river flow on the scale of the order of 
the water depth, and seems to correspond to a dominant circulation with a 

diameter of the order of depth around a longitudinal axis and to the streets 
of spots or voils observed on the surface of a river. These phenomena can 

be seen in flow patterns over the entire surface of a river obtained from aerial 

photographs using the Cameron  effect''. 
 The Reynolds number of river flow and then the width of the spectrum is 

very large as mentioned above, however it is by far the smaller compared to 

oceanic or atmospheric turbulence which is in motion on a global  scale'°0". 

3. The spectral structure of river turbulence 

 It is well known that there exist eddies of every size in river flow, but there 

is little knowledge about the distribution of eddies. The results obtained from 
the measurement of the velocity field of river turbulence which has a spectrum 

of wide spread, by a specific measuring instrument are cut at the frequencies 
corresponding to the size or inertia of the instrument and duration of observa-

tion. Therefore, in order to know the structure of river turbulence correctly, 

pertinent measurement and treatment of data should be made with the under-
standing of the spread of spectrum in a flow. 

 Moving average is one of the simple methods of estimating the distribution of 
the eddies and the size of the largest eddies in a flow. To investigate the 

dependence of turbulent velocity on the averaging period  To it is reasonable to 

proceed as follows. The dependence is equivalent to the relation between the 
size and the velocity of the eddies. Let velocity at some point in the river be 

represented by the function  u(t). This function is represented by a superposi-
tion of simple harmonic vibration with different amplitude and periods T. When 
some particular considerations induce selection of an averaging period T, we 

thereby classify all components with periods greater than  To as conforming to a 
law for the variation of the mean velocity  17(1) and all velocity fluctuations of 
higher frequency will then be regarded as turbulent fluctuations  u'(0. In order 

to isolate periods greater than  To in a given curve from the other fluctuations 
the function u(t) must obviously be passed through some selected filter. In the 

practical application of the smoothing operation to experimental data, it is 
difficult to employ an ideal filter in most cases. Although the spectral smoothing
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characteristic is more or less interior to the ideal filter, we use smoothing of the 

following form, 

 k+-T  2 

                   To27-(k—01     fit=E (3.1)  To                                                         Ju''                                  i=k— 2 

Having derived the averaged function  a  (0  , we easily obtain the corresponding 
fluctuating velocity  141(0. We can also analyze the value of  u" as  To increases. 
It is easily seen that this is the energy of the longitudinal turbulent fluctuations 
having periods smaller than  To. If smoothing is performed with an entire set 
of the smoothing parameter  To, we can then generally obtain the energy distribu-
tion. In other words, this method can be used to investigate the energy spec-
trum of the turbulent fluctuations of river velocity. 

 As mentioned already, various sizes of eddies are distributed widely in river 
flow. The spectral representation seems to be the most useful for this problem. 
According to the  modern theory of turbulence, energy flux or energy dissipation 

 e is the only determining parameter of all the statistical properties of turbulence 
in the region of the range of local isotropy. The form of the energy spectral 
density has been determined theoretically in this region. It is well known as the 
Kolmogorov  —  5/3 power law, and numerous experiments have justified this 
theory. The one-dimensional spectrum function F(n) is expressed in terms of 
the frequency from the three-dimensional spectrum function  (2.3) as follows, 

                 F(n) 10q) = _72/3E2/3n-5/3  (3.  2)  (2
7)2(a 

where C is the universal dimensionless constant and  C=  (9/55)A", n the fre-

quency (1/sec),  27 the mean velocity at a given point (cm/sec),  e the energy 
dissipation per unit time per unit mass  (ems/sec'). The most recent determina-
tions suggest that C is between 0.45 and 0.51". Grant et  al.', have obtained a 
value for C of  0.47  ±0.02, in the case of water turbulence in a tidal  channel  ; 
the viscous dissipation rates ranged from 0.0015 to 1.02  cm2/secs. The experi-
mental value of the constant C has recently been verified theoretically by  R. H. 

 Kraichnan"'. 
 The energy flux s is a very important parameter as mentioned already. There 
exist a large number of estimates of the dissipation  e in the field of atmospheric 
turbulence". It is simple to determine the  u*2(da/dz), where  u* is friction 
velocity. This is the rate of production of mechanical energy, under conditions 
when turbulent energy is in equilibrium, and near the boundary wall all the 
terms in the energy equation can be neglected except terms of production and 
dissipation of energy. Diffusion experiment and integration of the spectrum 
measured in the dissipation range also give the methods of estimation of the 
value of  E. In this paper, we estimate  E from the expression  (3.2) under the 
assumption of the value of the universal constant C. 

 The most comprehensive practical procedure to give a spectrum is as follows. 
The method is intended to provide a realistic analysis of a finite series of dis-
crete observations such as would be obtained by reading a velocity record at
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prescribed  intervals, With N observations at intervals of time  At the first step 
is to form the  auto-correlation function Rk of the values  u,  (i  =1,  2,  .  .  .  ,N) for 

successive values of lag  Fedi', 

 1 N-k 1 N-11; Na  Rk  N—  k1. EN— k ,E ut+k (3.3) 
 (k  =0, 1 m). 

From the values of auto-correlation function obtained in this manner, power 
spectral densities are calculated. 

                Fit—Llt[Ro+ 2m-tRk cos  khr  +Rmcosrh,.  (3.4) 
 k-  I 

 (h=0, 1  2  m) 

Each value of  Fh corresponding to a frequency band whose mid-point is found 
by means of the  formula  :  

•  nn= 2mdt(3.5) 

where  Lit is the interval between successive observations. To obtain a better 
spectral estimate than that of (3.4), a simple smoothing operation is performed. 
In this investigation the Hamming procedure was used and final spectral estimates 
were obtained. 

 The choice of the number of lags is important. For resolution of the spec-
trum into narrow bands  m should be as large as possible, but if it is too large 
the computational work involved may be prohibitive and, more important prob-
ably, the accuracy of the estimates decreases.  Tukey"1 suggests that m should 
be small enough in relation to N to make the number of degrees of freedom f 
satisfactorily large, 

 2(N —m/1)          - - •  (3.6) 

(a) Observations 
  Observations of river turbulence were conducted with a propeller-type current 

meter in the Uji river, Kyoto. The Uji river, flowing in front of our laboratory, 
rises in Lake Biwa and discharges into Osaka Bay. The observation point at 
Yodo is about  38  km up the river mouth. There is no tidal influence. The flow 
is regulated by the Amagase Dam situated about 17 km upstream from Yodo. 
In the upper  10  km reach from the observation point at Yodo, the river channel 
has a constant width  of about 100 m, and there are no sudden curves and no 
large amounts of inflow. In the reach shown in the location map in Fig. 3. 1, 
the channel is repaired regularly so as to be almost constant in width and depth. 
In this reach the width and depth of the channel are uniformly about 100 m and 

 9 m, respectively, the bottom is sandy, the slope of the river is 0.00026 and 
Manning's roughness coefficient is 0.027. It is considered that a statistically 
stable state of river turbulence is presented. Since the Yodo water gauge is
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  .GM 
 0  10  20  30 

                 Photo. 3. 1 An electric propeller-type current meter.
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conveniently situated about 1 km up from the observation point, variations in 
the discharge of flow could be checked during the observation. 

 The measuring instrument used is shown in Photo. 3. 1. It is a commercial 

six-bladed propeller-type current meter, and the propeller is  14  cm in diameter. 
The rate of turning of the propeller is linearly proportional to flow speeds normal 

to the blades and closely follows the cosine function for all other angles of attack. 
The propeller drives a low-inertia, low-friction DC tachometer generator. Since 

the generator in its watertight body and the shaft of the propeller are coupled 
magnetically, the output voltage of the tachometer generator is essentially linearly 

proportional to the flow speed. This permits the output to be measured by 
almost any millivolt recorder. The axis of the propeller is always set in the 

direction of flow by the tail fins mounted on the instrument body. The starting 
speed of the current meter with the generator engaged is about 10 cm/sec, and 
the time constant of the whole instrument after connecting with a pen-writing 

recorder is evaluated to be less than 0.6 sec for frequency response. The recorder 
used has a 2  M2 input impedance.  Therefore this meter is sufficiently avail-

able for measuring the fluctuating velocity in the direction of the mean flow, 
having frequencies lower than 1 cps. 

 It is clear that these instruments are not suited for the study of the fine struc-

ture of the velocity field or of high frequency fluctuations in the river turbulence 
spectrum. However, the very large horizontal dimensions of a river result in 

large scale horizontal processes. Therefore a long series of observations extend-
ing over many hours is requried  when studying the large scale characteristics 

of horizontal velocity. The small period  fluctuations, which contribute only 
negligibly to horizontal turbulence, can be neglected altogether. Therefore this 

current meter can be regarded as entirely satisfactory for investigating the large 

scale velocity fluctuations that contain a considerable portion of the energy of 
river turbulence. 

  During the observations, the current meter was suspended in the center of the 
channel from a wire rope stretched between the two banks, and the position of 
the instrument was  40  cm below the surface of water for convenience of observa-

tion. The fluctuating velocities were  recorded by the self-balancing type of pen-

writing recorder taken on a motor boat anchored a few meters down from the 
current meter. 

(b) Moving averaging 
  In May of 1966, an observation of turbulent velocity was made during a period 

of 30  min. The depth of water was 2.0 m and the average velocity over 30  min 

was  1.28m/sec. The smoothing procedures  were carried out on the data obtained 
from the 30  min observation. The amplitudes of the fluctuations of velocity were 

read off at 0.6 sec intervals, which were then subjected to smoothing using formula 

 (3.1) and  To  —  1.2, 6.0, 60 and 300 sec. Fig. 3. 2 shows graphically how an 
increase of the averaging period causes all the smaller scale fluctuations to disap-

pear, so that the curves become increasingly smoother. 
  The length of the largest eddies of the vertical turbulence is assumed to be 

nearly equal to 10 times the height from the bottom, and then their passage time 
10  Hffi is about 1/4  min in this case. These eddies are clearly contained in the 

result with the averaging period of  6  sec. Existence of a great variety of eddies
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  Fig. 3. 2 Velocity Variations in the river for different averaging periods. (1)  : In-
    stantaneous  values,  (2)  : with the averaging period 6  sec, (3)  : 1  min,  (9)  : 5  min. 

 B=100 m,  1/=-2.0  m,  u=1.28  m/sec. 

larger than these is also seen in Fig. 3. 2. We can understand from this figure 
that the spectrum of turbulent velocity in river flow is wide spread. The result 
with the averaging period of 5  min awakens our interest because there seems to 
be a long wave with a period of about 10  min, although only one wave exists. 
The length of this eddy is estimated to be nearly equal to 10 times the width of 
the channel using the frozen turbulence hypothesis. This will be refered to in 
section 4 in detail. 
(c) Power spectrum 

 In order to obtain the whole figure of the spectrum of river turbulence, the 
observation of turbulent velocity was conducted during a period of 1 hour with 
the propeller-type current meter at Yodo in September of 1966. The location of 
observation and the instrument used were mentioned above. During the ob-
servation, depth of water was 2.7 m and averaged velocity during 1 hour was 

 1.3m/sec. A root mean square value of the velocity fluctuation  Vu'2 during 1 hour
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was estimated as 6.62 cm/sec, and then turbulence intensity was  1/W2/17=0.051. 
The root mean square value during 1 hour is assumed to be nearly equal to the 
velocity of the largest eddies of the horizontal turbulence in this case. The 
reason is as follows. The duration of 1 hour is larger than the passage time of 
the largest eddies of the horizontal turbulence, and then the value  Viei during 
1 hour contains the root mean square value of the largest eddies of the horizontal 
turbulence. Moreover, if the velocity fluctuations of horizontal and vertical 
turbulence are represented as  ttrt(t) and  uv(t), respectively, total fluctuation of 
river turbulent velocity is expressed by 

 u(t)  =  toy  (0  4  uv(t). (3.7) 

Therefore if  WO and uv(t) are statistically independent, 

 u"(t)—ux"  (t)  tiv"  (0  .  (3.8) 

Hence the following relation is obtained because  VuT/12>  Vuv", 

 1/u12(t)  =-Vu),"(t)• (3.9) 

 The energy spectral densities calculated by the formulae (3.3), (3.4) are shown 
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       Fig. 3. 3 Energy spectral density of the longitudinal velocity in the river. 

 B  =  100  m.  H=2.7  in,  0=1.30  misec.
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in Fig. 3. 3. In this figure, black and white circles represent the values estimated 
from the data which was obtained by applying the  moving average of a period 
of  Jt=1 sec and  Jt=10 sec to the original data. This procedure was carried out 
for convenience of computation. The energy densities obtained from the average 
were corrected with the aid of the weighting function  sin2rozdt/OrnJ02 .14' 

  The energy densities distribution is in good agreement with the Kolmogorov 
 —5/3 power law in both the region of horizontal and vertical turbulence . How-

ever the parameter of the mean energy dissipation which is the only parameter 
describing the statistical characteristics of the inertial subrange is different in 
each region. There exists a transitional region between the frequencies  0.05  — 
0.06 cps, which corresponds to the frequency of passing of the largest eddies of 
the vertical turbulence at the observation point. It has been already found that 
their length is nearly equal to 10 times the height from the  bottom."' 

 The parameters of the mean energy dissipation were estimated from Fig. 3. 3 
and Eq.  (3.2) as  an  =0.030  cm2/sec3 for the horizontal turbulence and  ey  0.21cm2/ 

 sec' for the vertical turbulence. In this estimation, the universal constant C in 
Eq. (3.2) was chosen as 0.50. The value of  e permits the estimation of the 
Kolmogorov microscale  Ao from Eq.  (2.  4), and this scale is nearly equal to the 
size of the eddies of maximum  dissipation'''. The results are that  (v'/en)" 

 0.076  cm in a low frequency range and  (1,3/8,-)"4  —0.047 cm in high frequency 
range. Most turbulence energy comes to be dissipated in eddies smaller than 
those of 1 cm in diameter, because  MacCready''' says that 90% of viscous dis-
sipation occurs in the eddies smaller than those of 15 times of the microscale 
of Kolmogorov. On the other hand, turbulent viscosity that transmits energy 
from horizontal turbulence to vertical turbulence through the transitional region 
was evaluated as 8.7 x  10°  cm°/sec from Eq.  (2-  5). 

 A similar observation was made in the same month at the same place. The 
condition of the observation was that water depth at the observation point was 
2.7 m and the position of the current meter was  40  cm below the surface in the 
center of the channel. Fig. 3. 4 shows the estimated spectral distribution. The 
average velocity during 1 hour was 144 cm/sec and the root mean square value 
of the velocity fluctuation was 7.2 cm/sec. This spectrum is presented in a dif-
ferent way from that in Fig. 3. 3. Plotting nF(n) against logn gives a form of 
spectrum curve which is much used in practice, for while using a scale which is 
more convenient when large ranges of frequency are involved, it retains the 
useful feature of representing the contribution to the total variance in specified 
frequency bands, since  nfi(n)d(logn)—F(n)dn. The nondimensional frequency 

 nIVII used in the figure may be regarded as the ratio of the depth to the wave-
length. The significant feature of the spectrum is the presence of the vertical 
turbulence maximum which lies at  nH/a=0.1. That is to say, the length of the 
largest eddies of vertical turbulence is about 10 times the depth. In order to 
know the statistical properties of the horizontal turbulence maximum, duration 
of observation should be at least 10 times the passage time of the horizontal 
largest eddies. This problem will be referred to in the next section. 

 Fig. 3. 4 shows that there exists a gap between the horizontal and vertical 
turbulence regions. Such a gap in the spectrum is well known in atmospheric 

 turbulence", but much wider and deeper than that in Fig. 3. 4. That is to say,
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 Fig.  3. 4 Schematic spectrum of longitudinal velocity in a river. 

               B=100 in,  H  =2.7  m,  =1.44m  'sec. 

there exist a synoptic maximum of approximately 4 days, a micrometeorological 

maximum of the order of 1  min and a wide  mesometeorological minimum separat-

ing them in intervals of several minutes up to several hours. The actual separa-

tion of the synoptic and micrometeorological fluctuations substantially mitigates 

the difficulties in determining the mean values of the micrometeorological charac-

teristics connected with the phenomenon of the evolution of the level of the 

meteorological fields. If the gap in the spectrum of river turbulence is very 

wide, it permits a relative determination of the stable mean values by the averag-

ing by periods which belong to the region of the trasitional region of the spec-

trum.  However, the gap in the spectrum of river turbulence is unfortunately 

not so large. 

                   io 

 0.5 

 of • •  
         0  05  1.0  15  2.0  min 

        Fig. 3. 5 Auto-correlation coefficient of turbulent velocity of river  flow. 
           B=100 m, H=2.7 m,  u=1.44  m/sec. 

  The con-elogram calculated before the spectrum of Fig. 3. 4 is shown in Fig. 

3. 5. This closely resembles the auto-correlation function of the sum of two 
statistically independent stationary random processes of markedly different 

 scales"). This also shows the adequacy of splitting the spectrum of river tur-

bulence into regions of horizontal and vertical turbulence.
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  As mentioned already, there exist two characteristic scales of width and depth 
in the simple straight open channel of large width . However in a real river, 
there exist  many characteristic scales which are of the order of magnitude of 
the size of eddies related to the turbulence energy input, such as the eddies 

produced by the meander of channel, bottom roughness, hydraulic structures, 
and so on. An actual figure of the field of the river turbulence will be a super-

position of all these effects. 
  A similar figure of the velocity field is proposed by  Ozmidov'°' in oceanic 

turbulence, where the energy supply to oceanic turbulence occurs around the 
scale of wind waves, of inertial and tidal oscillations, and in the scale range of 
major atmospheric disturbances. 

4. The largest eddies of horizontal turbulence 

 The scale of horizontal turbulence is usually so much greater than the vertical 
scale that its effects can be considered separately. As was pointed out earlier, 
a very wide spectrum of horizontal turbulent motions exist in a river. The 
statistical properties of horizontal turbulence are assumed to be nearly uniform 
in a vertical direction. Therefore we can regard them just as two-dimensional 
thin 'discs'. It is clear that large scale horizontal mixing due to the horizontal 
eddies plays an important part in the turbulent diffusion in a river. Between 
these large 'discs', existence of the cascade process of turbulent energy, that is 
an applicability of the Kolmogorov  —5/3 power law has been already shown in 
Fig. 3. 3. 

 In order to estimate the size of the largest eddies of horizontal turbulence, 
observation similar to that mentioned in the foregoing section was carried out. 
The average velocity during the observation period of 1 hour was 1.23 m/sec and 
the water depth was 2.1 m. The result obtained by applying the moving average 
of a period of 5  min to the original record making use of the Eq.  (3.1) is shown 
in Fig. 4. 1. 

 I25  
 cm/sec 

 —10min-7 
120  

       Fig. 4. 1 Velocity variations in the river with the averaging period 5  min. 
           H=2.1  m,  u=1.23  m  /sec. 

Obviously, the dominant period of about 14  min is found in this figure. This 

period corresponds to that of passage of the eddies whose size is nearly equal 
to 10 times the width of the flow. It may be assumed that they are the largest 
eddies of horizontal turbulence, the length of which is about 1 km in this reach 

of the river, because excessively slender eddies cannot exist stably and the motion 
of the largest eddies has been assumed to be fairly regular. The gradual de-
crease of velocity in Fig. 4. 1 is due to the operation of discharge at the Amagase
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Dam, which was detected from the record of water level at the Yodo water 

gauge situated 1 km above the observation point. 

 crnsee 

36  

         iirlIvAk A a alk        34          V 

 lOseo 
32   
   Fig. 4. 2 Velocity variations in the laboratory flume with the averaging period 10 sec. 

     B=60 cm,  H=15  cm,  2=34 cm/sec,  length of the  flume  =150  m. 

  Laboratory experiment concerning the size of the largest eddies also supports 
the fact just mentioned above. Velocity variation was measured near the end 
of the experimental flume 150 m long and 0.6 m wide using the miniature pro-

peller-type current meter, the details of  which are described in section 6. The 
water depth was fixed at about  15  cm during measurement. Formation of the 
stable field of horizontal turbulence is expected from the reach into 150 m. Figure 
4. 2 shows the result of the moving average with the averaging period of 10 sec 
with the use of the formula  (3-  1). Since the width of the channel B was  60  cm 
and mean velocity a was  34  cm/sec in this experiment, the passage time of the 
horizontal largest eddies  ion/a is estimated as about 18 sec. In this figure, the 
average of the dominant period of velocity variation seems to be approximately 
18 sec. 

  The size of the largest eddies of horizontal turbulence, caused not by the 
artificial or natural variations of a flow discharge but the geomorphological fea-
tures of a river channel itself, is assumed to be of the order of 10 times the 
width of the channel longitudinally, and equal to its width laterally and to the 
depth of the flow  vertically"'. These facts are very interesting for us consider-
ing the fact that the length of the largest eddies of the vertical turbulence is of 
the order of 10 times the depth of flow. When, therefore, the detailed statistical 

properties of the horizontal largest eddies are required, observation of the velocity 
fluctuation during the period of  won/a is, at least needed, which is 10 times the 

passage time of the horizontal largest eddies. But in general, continuous observa-
tion of velocity during such a long period is difficult because of the variation in 
the discharge of flow and because the existence of floating matter disturbs the 
revolution of the propeller of the current meter. 

5. The largest eddies of vertical turbulence 

  Turbulence energy of horizontal turbulence is transmitted to vertical turbulence 
through the transitional region. In this process of energy transfer, the transi-
tional region poses a very important problem, where the energy of the two-
dimensional field is transmitted to the three-dimensional velocity field. The 
eddies of the transitional region or the  largest eddies of vertical turbulence seem
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to correspond to the scale of motions such as dominant circulations of a diameter 

of the order of the depth and the phenomena of streets of spots or voils observed 
on the surface of a river. 

 In order to clarify the statistical properties of the largest eddies of vertical 
turbulence, observations of turbulent velocities were conducted at Yodo using 

two propeller-type current meters. The location of observation and the measuring 
instrument have already been described in detail in section 3. During the observa-
tion, the depth of water was 2.7 m and the average velocity during 1 hour was 

 1.3  m/sec. Therefore the Reynolds number was  3.5  x  106 with the depth and 1.3 

x 100 with the width, because the width of the flow was  100m. If Taylor's 

hypothesis of frozen turbulence is permitted, a longitudinal scale of energy con-
taining eddies or the largest eddies and an average eddy size can be estimated 

from the velocity measurement with one instrument. However a lateral scale of 

such eddies cannot be estimated from the observation with one  instrument  ; at 
least two instruments arranged laterally are necessary for this purpose. During 
the observation, one current meter was fixed in the center of the channel and 

the other one was moved laterally with separation distances of 0.5, 1.0, 1.5, 2.0, 
3.0, 4.0, 5.0, 7.0 and 10 m. Each current meter was suspended  30  cm below the 

water surface, and longitudinal velocity fluctuations were measured simultaneously 
for 5  min at each separate distance. 

 The amplitudes of the fluctuations in the two traces on each record were read 

off at 1 sec intervals and from this data the root mean square values, power 
spectra and cross-spectra for various time lags were computed. The average 

                                    value of the relative turbulence in-
                                    tensity of the longitudinal velocity 

                                    fluctuations was 0.057 which was 
                                    obtained from 18 series of data of 9 

                                       sets of observations. The relative 
                                    height of the current meter to water 

        Idepth was 0.85. The distribution of      , , - 

                                    the energy spectral densities of 18 

                                       series of data is shown in Fig. 5. 1, 
          \\ 

 II`di 
                Itand the Kolmogorov —5:3power law  -a 

                                    is also presented. The dissipation 

                                       of turbulent energy was estimated 
 At't1:,1  1OA ,as  Er  =0.74  cmVsec3 from the method 

                                       used in section 3. This value agrees  icL with that obtained in section 3  in 
                           O..order of magnitude.                             \,̂t, The average eddy size or integral 

                                    scale is obtained from the correlation 
                                       measurements. In this paper, the 

                                    longitudinal integral scale  Lz was 
 J!  I  D calculated from the longitudinal  in-                             

' (n2R-- tegral time scale, 

Fig. 5. 1 One dimensional spectral densities of  I  Rz(t)dt,  (5.1) 
 river turbulence.  R=3.5  ><106.  .
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using Taylor's frozen turbulence hy-  ri • 

pothesis  Lx—u7,., where R(t) is an 
autocorrelation coefficient obtained 
from  (3.3) divided by the variance. 
The result was  L.,—  4.8 m, that is, the 
average eddy size is twice the height  0.5 
of the observation point. The  deter-
mination of the integral time scale of 

 - vertical turbulence is difficult when 

the correlations do not come to zero 

• rapidly, because of the existence of04  8 8 

• trends in the data. The trends are the 0 2  • 10 

velocity variation of horizontal  turbu-  Fig . 5. 2 Lateral spatial correlation. 
lence, the periods of which are not so 
large compared to that of velocity fluctuations of vertical turbulence, because 

the gap or transitional region of the spectrum is  small. On the other hand, the 
lateral integral scale was obtained from the covariances measured at each separa-

tion of instruments. The lateral spatial correlation curve is shown in Fig. 5. 2. 
The area under the correlation curve gives an indication of an average eddy 

size in the lateral direction. The result was  L„  =0.95 m, which was  2'5 times 
the height of the instruments. After all, the length of the average eddy is about 

5 times its width. 
 The length of the largest eddies of vertical turbulence was already estimated 

as 10 times the height, which is also estimated here as follows. We assume that 
the large eddy end of the inertial subrange of the spectrum corresponds approxi-

mately to the frequencies of the largest eddies. From the turbulence spectra of 
the longitudinal velocities in Fig. 5. 1, the isotropic limit where the slope of the 

spectra begins to deviate from that of —5/3 seems to lie at about 0.05 cps. The 
ratio of height to wavelength  nz/is is then about 0.1. That is to say, the length 

of the largest eddies of vertical turbulence is nearly equal to 10 times the 
height. 

 The width of the largest eddies is determined from the lateral spatial spectrum 
of turbulence. However there is no data available for the calculation of lateral 

spatial spectrum of river turbulence so we calculated it from the data obtained 
from the measurements by two current meters arranged laterally, using the 

cross-spectral  analysis. 

  -

 From  the  two  series  of  velocity  fluctuations  x(t)  and  y(t)  measured at two 

positions, cross correlation functions are calculated by means of the  formulae  : 

 N-k  Ry„(k)— 1[N-kE—ExEy+7,1,  (5.2) 
 N—kt-IN—k''J 

            1  [N-k N-k-k            R
„,c(h)—E xny•—".+,y•Ex       N —kN—k (5.3) 

 (k  =0,  1,  . 

where N is the total amount of data and m is the maximal lag of the correla-
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tion function. Cross correlation is not necessarily either even or odd, hence 

cross spectrum is given by 

 Co  (h)  =  2  dtiE  (0)  +  2  E  E(k)  cos  klix   +  E  (m)  (5.4) 
 171 

            - kh 
                   Q (h) = 4zlt 0 (k)sinir                '(5.5) 

where  E(k) and  0(k) are even and odd parts of cross correlation, 

 E(k)  =  -1  (R2, (k)+  Roz(k)), 

 0  (k)  = 21(R„(k)(k)) , 

and Co is the real part of the cross spectrum, Q the imaginary part. They are 
called cospectrum and quadrature spectrum respectively. The cospectrum meas-
ures the contribution of various frequencies to the covariance. The quadrature 
spectrum is zero if the cross correlation is even. From the values of Co and Q 
the so-called coherence Coh is calculated. This is the square of the spectral 
correlation, that is, the normalized  covariance  ; 

 Co2+  Q2        Coh = (5.6)                                      F
z.F' 

where  Fr and are power spectral densities of x(t) and  y(t), respectively. This 
is the value characterizing the coupling between fluctuations of a given frequency 
in the two series of observations under consideration. If the fluctuations in both 
series have a constant phase lag, their coherence is equal to unity. If their 

phase lag has random values, then for sufficiently long series, the function Coh 
becomes zero. The phase lag is given  by 

           tan'' ' (5.7)                                Co 

where the unit of  q, is a radian. 
 Fig. 5. 3 shows the coherences and phase lags calculated for each separation 

of instruments by the formulae (5.2) — (5.7). The results calculated for the 
separation of instruments larger than  3  m are not presented in this figure, because 
their coherences were negligible. According to the increase of separations, coher-
ences decrease to zero and phase lags leave from zero at low frequency. Assuming 
that the coherence decreases linearly in the low frequency region, let the frequency 
where the coherence becomes zero be  no, let the separation distance between two 
instruments be d and the mean velocity  U. The value  nod  /a indicates the ratio 
of the separation distance between two instruments to wavelength. An averaged 
value of  nod  /u calculated from the coherences when the separations were  d= 
0.5 and 1.0 m was about 0.1. This means that if the separation distance be-
comes 1/10 of the wavelength, coherences come to zero, that is to say, there
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exists no correlation between the two series of velocity fluctuations. We there-
fore conclude that the width of the largest eddies of vertical turbulence is about 
1/10 the length of these eddies. After all, the size of the largest eddies of verti-
cal turbulence is of the order of 10 times the depth of flow longitudinally and 
nearly equal to its depth vertically. 

 The phase lags in the low frequency region were approximately zero at the 
short separation. According to the increase in frequency, the values of phase 
lag fluctuate violently plus and minus in a random manner. In this case nega-
tive phase lag indicates that the phase of the fluctuation measured by an instru-
ment that is moved lags compared to that measured by a fixed one. It seems 
to be very important for an understanding of the nature of the largest eddies 
whether the sign of the phase lag becomes plus or minus from zero in the lowest 
frequency region. The problems related to the phase lag must be discussed with 
consideration of the value of coherence, because the phase lag at a frequency 
where the coherence is very small is meaningless. At this observation, the 
duration of observation was too short to discuss the coherence and phase lag in 
detail. 
 Two other similar observations were conducted after the position of the fixed 
current meter was changed. Their spatial correlations and coherences were too 
small to discuss the size of the largest eddies. It was supposed from these re-
sults that in uniform river flow there exist rows of secondary circulation with 
a streamwise axis that are very stable spatially. Therefore the results obtained 
are different according to the lateral position of the observation. These facts 
seem to be supported by the flow patterns obtained from the aerial  photograph". 

6. The structure of vertical turbulence 

 In the vertical turbulence of river flow, 
contrary to horizontal turbulence, there 
exists a strong shear of mean flow in the 
region near a solid boundary. The turbu-
lence structure of the boundary layer de-
veloped from a bottom with no effect from 
a side wall is assumed to be similar to 

 . that of usual boundary  layer. A  turbu-

lence structure near the free surface differs 
from that of a rigid  wall, because  tangen-

tial and vertical movements are not  pro-
hibited at the  boundary. Furthermore the 

stress at the free surface is  zero. In  the 
region near a side wall, boundary layers 
developed from the wall, bottom and free 

surface interfere with each other and gen-
erate a strong secondary flow and  com-

plicated turbulence structure. These are 
the peculiar features of open channel  Photo . 6. 1 A miniature propeller-type 
turbulence, in itself distinguished from current meter . The diameter of the 
other fields of turbulence. propeller is 1.5 cm.
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 Two kinds of observation of boundary layer turbulence were conducted in the 
Sosui canal with the use of a miniature propeller-type current meter. The one 
was of the boundary layer between the  bottom and  a free surface developed 
from the bottom, and the other of the corner region consisting of a side wall 
and a free surface. 
(a) Measurements 

 Turbulent fluctuations of velocity were measured with a miniature propeller-
type current meter which consists of a four-bladed propeller  1.5  cm in diameter 

(Photo. 6.  I). The shaft of the propeller was supported by jewel bearings. 
When the propeller blades rotate between a pair of platinum electrodes mounted 
in the frame at right angles to the propeller axis, four electric pulses due to the 
variation in electric resistance are generated by one rotation of the propeller. 

 The average velocity  U  (cm/sec) was represented by the number of pulses per 
second p as 

 U-0.76p+2.4.  (6.1) 

Starting speed was about 3cm/sec. In order to know the response of the instru-
ment, time constant  r was estimated for various speeds  Un assuming an exponent 
transient response, which is shown in Fig. 6. 1. A limitation of turbulence 
measurement with this instrument is clear from this figure. That is to say, since 
this instrument is not sensitive to the fluctuation of velocity, frequency of which 
is higher than that of response, the spectrum of phenomena is cut off at this 
frequency. 
 The pulses generated by the cur-
rent meter were recorded  continu-                                                 0 .10  - 
ously by a pen-writing oscillograph 
through a dynamic strainmeter and 
DC amplifier. Recorded pulses were0.08 - 
counted continuously at 1 sec inter-
vals and velocity calculated from  aos - 
(6.1) was regarded as an average 
velocity during an averaging time 0.04  -
of 1 sec. Since this type of current  0 
meter was supposed to be used origi- 
nally to estimate an average velocity0.02 - 
over a long time interval, the pro-
cedure which estimate an aver- 0                            0  10  20 30 40 50 
age velocity during 1 sec from the  tja  (cmisec) 
number of pulses during an averag-                                        Fi

g. 6. 1 Dependence of time constant of cur-ing time of 1 sec is a question. To                                           rent meter on velocity. b
e exact, the velocity calculated from 

p differs from the real velocity because the value of p is represented as an 
integer in spite of continuous velocity variation. This error decreases relatively 
when the velocity or averaging time increases. Therefore in using this type of 
current meter, besides the limitation due to the size and response of the current 
meter, the limitation due to the indicating mechanism of the rotation of propeller 
must be taken into consideration. If the error of this type is relatively large,
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turbulence properties in the flow will be masked by this error like a white 
 spectrum's'. 

 The choice of sampling duration is also important. For the observation to 
determine the statistical properties of vertical turbulence in detail, the irreducible 
minimum of time for the observation is about 10 times as long as the passage 
time of the largest eddies or energy containing eddies. That is, the sampling 
duration needed is at least  100z/a, where z is the distance from the wall and  u 
the mean velocity at this distance. However, a needlessly long time of observa-
tion would be in danger of entering unwanted phenomena, such as variation in 
flow discharge. 

(b) Boundary layer developed from the bottom 
 In October of 1965, observation of boundary layer turbulence was conducted 

at Fukakusa point in the Sosui canal with a miniature propeller-type current 
                                       meter. The canal has a regular 
                                       trapezoidal cross section, which is 

 M                                      sho wn in Fig. 6. 2. The side wall 
 o.emr are made of stone masonry and the 

 Lam  0. bottom is sandy. The stable turbu-
                                       lent boundary layer was expected to 

Fig. 6. 2 Cross-section of  the Sosui canal atexist, because the upper reach of the 
  the observation station Fukakusa.canal from the observation point 

                                    was straight for a distance of about 
 200  m. During the observation, the discharge of flow was 16 ton/sec and the 

slope of the canal was 1/4,000. A steel pipe  3  cm in diameter was used to sup-

port the current meter at various depths along the dotted line in Fig. 6. 2. 
Location of observation presented by a 
dotted line in this figure was too near to 200 

%  the side wall for the purpose of this sec- iso 
tion. In the following analyses of data, 
sampling duration and averaging time are loo 
uniformly  3  min and 1 sec, respectively. 

Mean velocity profile 

 The variation of the local temporal mean SO 
velocity  a with height from the bottom is 
represented in Fig. 6. 3. The velocity pro-
file was very nearly logarithmic throughout 
the vertical direction, and this made it 

possible to estimate the value of friction 
velocity  u* from the following expression, 

 0 20  40  BO 80 '00 
 U*=-K  du(z)/dlogz,  (6.2)  11(cm/sec) 

                                                Fig. 6. 3 Logarithmic plot of mean 
whereKis Karman's constant of 0.4"'. 
The calculated friction velocity u* was 5.4velocity distribution in canal. Water                                               depth  1/=180cm , friction velocity 

 cm/sec, which was 30 dyn/cm2 in shearing  44=5 .4 cm/sec, roughness length  zo 
stress. An estimate of  u* from  i/gRi gives =0.7cm, Reynolds number  Re=1.2;', 
4.2 cm/sec, where g is the acceleration of 106.
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gravity, R the hydraulic radius and i the slope. Roughness was calculated as 
0.7cm, which seems to be too great for the roughness of sand at first sight, but 
this value will be assumed to come from the roughness of the sand waves formed 
on the bottom. A drop of the point of maximum mean velocity was not observed. 
Average velocity along this measuring line U was 65 cm/sec and the Reynolds 
number calculated from this mean velocity and the depth  UH/v was  1.2x10'. 
During the observation, a gentle wind was blowing against the water flow but 
the effect on the turbulence structure of the water flow was assumed to be 
negligible. 

Intensity of turbulence 

 Vertical distribution of intensity of turbulence  oil/a is presented in Fig. 6. 4. 
This result is compared with that of a number of measurements in the wind 

 tunnel"', atmospheric  turbulencen and measurement in the tidal channel with 
an electromagnetic  flowmeter2" and that in a small size laboratory  flume  0'. 
The tendency of distribution well agrees with that cited above but each value 
is rather high. The large value of intensities is supposed to come from numerous 
kinds of suspended matter in the flow, from the consideration of a study of a 
flow with a suspended  loadm 
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                Fig. 6. 4. Relative turbulence intensity in a canal flow. 

Eulerian correlation 

 Eulerian correlation coefficients were calculated by Eq.  (3.3) at various depth. 
Representative curves in the upper, middle and lower parts of the flow are shown 
in Fig. 6. 5. The figure shows that as an increase of the height, correlation, 
that is, a time scale of turbulence becomes gradually larger. The time scale of 
the turbulence is represented quantitatively by the integral time scale, 

 Ti=f  Rx(t)dt.  (6.3) 

This scale is generally difficult to determine because correlations do not come to 

zero at small lags. Semiscales were used, which were difined as the lag distances
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     at which the various correlations dropped to 0.60. If the correlation functions 
     were exponential, the semiscales would be half the integral time scales of turbu-

     lence. The integral scale or mean eddy size in the longitudinal direction is then 
     obtained using the assumption of frozen turbulence 

 (6.4) 

     where  Tr is twice the semiscale. The dependence of on height which is 
      linear increase is shown in Fig. 6. 6. In this observation, turbulence intensity 

     may be somewhat large to permit the assumption of frozen turbulence. Longi-
     tudinal eddy viscisity was also estimated by the method of Taylor-Sutton 

 Kr=  u'2Ti  ,  (6.5) 

     which is shown in Fig. 6. 7. There exist no appreciable variations of  Ka. with 
     height except in the neighbourhood of the bottom, which well agrees with the 

      Yudin-Shvets  assumption's', 

                         cz for z<h 
 K(2)=-1  (6.6) 

 ch=IC, for  2>h  , 

 %or 

                                                                                                        1.2 
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where c is some constant related to the friction velocity  u*. The value of  Kr 
near the surface, 1.5 x 102 cm2/sec, agrees with an estimation by Richardson's 

4/3 power law of  diffusion"). 

Energy dissipation 

 The rate of dissipation of turbulent energy  e is one of the most important 
characteristics of turbulence and completely determines the motion in the inertial 

subrange of the spectrum. It was evaluated from the relationships 

                                          $=atto8                        -- 

          la '  (6.7) 

in which the constant a is determined by the choice of velocity and length scales. 
In this case we can set  a=1 to estimate the relative variation of these values. 
For the velocity scale  uo we used the root mean square value of the longitudinal 
turbulent velocity  Vut2  and for the length scale  1. the integral scale of turbulence 

 Li of the longitudinal component. The values of  e were made the nondimen-
sional form with  E0=,Ugi, where U is an averaged velocity along the measuring 
line, g the acceleration of gravity and i the slope. The results of  e/to evalua-
tions are given in Fig. 6. 8, which display a general tendency for the rate of 
dissipation to diminish sharply with  depth"'  . 
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            Fig. 6.  8 Vertical distribution of turbulent energy dissipation. 

Power spectra 

 Normalized power spectra were calculated by Tukey's method  (3.  4). Repre-
sentative curves are shown in Fig. 6. 9 like the correlations. Abscissa is in 
unit of  nz/u (ratio of height to wavelength). Numerals in the graph indicate 
the height z in cm. The Kolmogorov —5/3 power law in the inertial subrange 
is not seen in the figure but a tendency of —1 power which was observed in the 
region close to the wall is  seen"). The length of the largest eddies is supposed 
to be of the order of 10 times the height as mentioned in section 3, because the 
spectra seem to have their maximum values near the frequency  nz/ii 

(c) Corner region between a side wall and free surface
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  Fig. 6. 9 Normalized power spectra of longitudinal velocity at different heights as 
    function of nondimensional frequency  nz/u. 

 For fully developed turbulent flow in a channel, there exists a transverse mean 
flow superimposed upon the longitudinal mean flow. This transverse flow, com-
monly known as secondary flow, interacts with the longitudinal mean flow and 
turbulence structure in a complex manner. Several detailed experiments have 
been conducted in a steady, incompressible, fully developed turbulent air flow 
in rectangular and triangular  ducts"),"'  . However there is no information about 
turbulence structure in the intersection region of a free surface and side wall. 

                                  Measurements of turbulent velocity in 
                                  the intersection region were conducted at 
                                Shinomiya in the Sosui canal with the 

                                  miniature propeller-type current meter. 
                                The canal is covered with concrete and 

 100  cm is  4m in width, as shown in Fig. 6. 10. 
                           Et"The slope of the canal was 1/2200, and                                    M

anning's coefficient of roughness was 
                                  0.019. During the observation, the water 

                                depth was 3m, discharge was 17.1  ton/sec, 

                             _and mean velocity calculated from the 
 39 discharge was 135 cm/sec. Therefore the 

                                Reynolds number with a hydraulic depth 
   400  cm  was about  2  x  106. The upper reach of 

 Fig. 6.  10  Cross-section of the Sosuithe canal from the observation section 
  canal at the observation point Shino- was straight for a distance of about  110m, 

 miya. which made it possible to measure the 
                                stable fully developed boundary  layer  tur-

bulence. The current meter was supported by a steel pipe  3  cm in diameter 
mounted on a bridge laid over the observation section. Velocity measurements 
were made at the points indicated in Fig. 6. 10. Duration of observation was



                  The  Structure of River Turbulence 27 

4  min and averaging time was 1 sec at each point. 

 Isovel patterns of longitudinal mean velocity are shown in Fig. 6.  11, which 

are made in nondimensional form divided by a cross-sectional mean velocity  U-
135 cm/sec. The distortion of the isovels in the corner region is clearly evident. 

Supposed secondary flows towards a corner are presented in this figure. The 
circulation on the free surface side seems to be flatter than that on the wall 

side. This secondary flow convects main flow momentum and energy towards 
the corner region,and is assumed to be the result of forces exerted by static 

pressure gradients and the Reynolds stresses in planes normal to the longitudinal 
 direction'. Fig. 6. 12 shows the distribution of longitudinal turbulence inten-

sity  thia. Intensity is very small near the free surface. Fig. 6. 13 shows the 
distribution of integral scale  L.,-, which was calculated from the integral time 

scale and frozen turbulence hypothesis. There exists a local maximum of mean 
eddy size in the corner region, which was not previously expected. Fig. 6. 14 

shows the distribution of longitudinal eddy viscosity calculated from the root 
mean square value of turbulent velocity and integral time scale. The local 

maximum also exists in the corner region. 

 These preliminary experiments show the significant effect of a free surface on 

the turbulence structure of an open channel flow. More detailed measurements 

especially of Reynolds stress with an ultrasonic flowmeter are expected. 
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Fig. 6. 11 Isovel pattern of  longitudinal Fig. 6. 12 Lines of constant turbulence in-
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7. Conclusion 

  River turbulence has many interesting properties of its own which are different 
from those in other fields of turbulence. In this paper, some of the properties 

were related to mean hydraulic parameters such as mean velocity, depth and 
width of flow. However, more detailed and extensive experiments are needed 

as a matter of curse. One of the most important and pressing matters for this 

purpose is to be sure of developing a suitable instrument for the measurements 
of river turbulence. 

  A propeller-type current meter is, as mentioned in this paper, very useful for 
the study of river turbulence. However, it has the fatal defects of impossibility 

of measuring the high frequency fluctuation of velocity and the velocity com-

ponents perpendicular to the main flow. In the development of a new instru-
ment possessing various items for measuring river turbulence, mere improve-
ment of traditional measuring instruments will not be sufficient. Recently, 

many trial developments have been made on the basis of new principles, and 
an ultrasonic flowmeter is one of the remarkable instruments developed from 

them. The ultrasonic flowmeter even makes it possible to measure three com-

ponents of velocity which are perpendicular to each other, simultaneously. 
 The ultrasonic flowmeter based on the method of sing-around has been used 

in our laboratory for the measurements of river turbulence. Simultaneous 
measurement of two components of velocity fluctuation is possible with this 

flowmeter. Furthermore, another type of ultrasonic flowmeter based on the 
method of pulse-time difference is being manufactured. A combination of these 

two ultrasonic flowmeters will make it possible to obtain the three-dimensional 

spectral density of turbulent  velocity, 
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