Practical Remedial Design Optimization for
Large Complex Plumes

Richard C. Peralta, M.ASCE'; Ineke M. Kalwij, M.ASCE?; and Shengjun Wu®

Abstract: Powerful simulation/optimization (S/O) models exist for designing groundwater well systems and pumping strategies. How-
ever, it can be challenging to use S/O modeling effectively for large, complex, and computationally intensive problems within project time
and cost constraints. Here, we present a generic two-stage optimization procedure for making S/O modeling more practical. Application
is illustrated for developing optimal transient 30-year pump-and-treat designs for Blaine Naval Ammunition Depot (NAD), Nebraska, and
using an innovative hybrid advanced genetic algorithm with tabu search features (AGT). AGT includes standard genetic algorithm and
tabu search features plus healing, elitism, threshold acceptance, and a new subset/subspace decomposition optimization. The screening
stage simplifies the optimization problem, and selects desirable remediation wells from among many candidates. During this stage,
computational effort is lessened by reducing the number of state variables needing evaluation, and the solution space dimensionality
(including temporal dimensions). Subset/subspace decomposition optimization of steady flow rates is used to identify desirable sets of
candidate wells. The transient optimization stage develops mathematically optimal time-varying pumping rates for well subsets identified
by the screening stage. It also includes reoptimization using the original objective function plus goal programming to increase strategy
robustness. Initializing the AGT with feasible solutions reduces computational effort. Within a short period the procedure developed
optimal pump and treat system designs for NAD. The procedure yields better objective function values than trial and error. Because
optimization causes tight constraints, the computed strategy is sensitive to changes in model parameters. Increasing strategy robustness via

AGT and goal programming degrades the value of the initial objective function.
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Introduction

S/O modeling is an effectual tool for preparing mathematically
cost-effective and environmentally sustainable groundwater qual-
ity management solutions. For example, Aly and Peralta
(1999a,b), Johnson and Rogers (1995), McKinney and Lin
(1995), and Peralta et al. (2003) develop optimal pump-and-treat
designs. Minsker and Shoemaker (1998), Liu and Minsker (2004),
Shieh and Peralta (2005), Smalley et al. (2000), and Yoon and
Shoemaker (2001) optimize in situ bioremediation. Cieniawski
et al. (1995), Reed and Minsker (2004), and Wagner (1999) opti-
mize the groundwater monitoring design.

S/0 models use simulation modules to predict system response
to stimuli, and use optimization algorithms to obtain an optimal
solution. Developing optimal remediation pumping strategies re-
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quires identifying the best well locations (possibly including in-
jection and/or extraction wells) and pumping rates. Groundwater
remediation problems can be highly nonlinear and complex, and
the solution can be computationally intensive. Often, they are
best solved using heuristic optimization (HO) and hybrid model-
ing techniques, because these more easily avoid entrapment
in locally optimal solutions than traditional nonlinear program-
ming (Marryott et al. 1993; McKinney and Lin 1994; Johnson
and Rogers 1995; Aly and Peralta 1999a; Yoon and Shoemaker
1999). HO includes genetic algorithms (GAs), simulated anneal-
ing (SA), and tabu search (TS). Monographs by Goldberg (1989),
Laarhoven and Aarts (1987), and Glover and Laguna (1997) pro-
vide details on GA, SA, and TS, respectively. Hybrid models
generally improve optimization efficiency by combining two ana-
lytical and/or HO techniques (Zheng and Wang 1999; Hsiao and
Chang 2002; Shieh and Peralta 2005; Espinoza et al. 2005).

Optimizing complex remediation problems involves selecting
candidate remediation well locations from hundreds or thousands
of possible well locations, and pumping rates, yielding an infinite
number of solutions. For simple sites and problems, such as
presented by Umatilla Army Ammunition Depot (site is described
in Becker et al. 2006), well location and pumping rates can be
optimized simultaneously. However, sometimes groundwater flow
and contaminant transport simulation algorithms require much
time, and the problem might require solution within a predefined
period. In such cases, considering all possible candidate well
locations during optimization might not be temporally efficient,
because it slows optimizer convergence to the best subset of
wells.
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Here we demonstrate a generic procedure, helpful for solving
complex remediation problems within a fixed time period. The
procedure entails: (1) a screening stage that uses subset/subspace
decomposition optimization and steady stimuli (pumping) simu-
lations to identify candidate decision variables (remediation
wells); and (2) a transient optimization stage that optimizes time-
varying pumping rates for subsets of candidate decision variables
(remediation wells). Here the optimizer applied in both stages is
an innovative advanced genetic algorithm with tabu search fea-
tures (AGT).

The procedure is applied to develop mathematically optimal
well systems and pumping strategies for managing trichloroethyl-
ene (TCE) and trinitrotoluene (TNT) plumes at NAD. It is used to
solve three optimization problem formulations. The first two for-
mulations minimize cleanup and containment cost. The third for-
mulation minimizes the maximum total pumping of any period
needed for containment. The procedure presented herein was ap-
plied for solving these formulations between June and September
2002, as part of a project for the Environmental Security Tech-
nology Certification Program (ESTCP). The goal of the project
was to demonstrate the benefit of applying S/O modeling for solv-
ing transport problems compared to a trial-and-error approach
that uses simulation models only. Blaine optimization problem
formulations were prepared by Blaine Naval Ammunition Depot
(NAD) personnel working with the ESTCP team. Contract deliv-
erables were feasible optimal strategies having the best objective
function possible. To avoid qualitative comparison, the contract
specified that sensitivity analysis would not need to be performed.
In other words, an actual implementable design was not to be
submitted. Instead, the task was to use optimization to prepare a
preliminary design that subsequently could be made more robust
based upon professional experience. For this paper, we performed
sensitivity analyses for computed optimal strategies. For one for-
mulation we use goal programming with AGT to modify least-
cost pumping rates to increase strategy robustness, and show the
attendant cost increase.

The ESTCP project completion report states that . . . applying
the transport optimization algorithms to these complex real-world
sites . . . required expertise to limit the potential solution space to
be searched ... These approaches require substantial expertise
and professional insight” (ESTCP 2004b). The fact sheet describ-
ing project results concludes with “Computational complexity
still poses challenges for transport simulation/optimization, and
expertise is required in the posing and solving of the problems”
(ESTCP 2004a). Becker et al. (2006) summarize project results,
without discussing details.

This paper responds to the above needs and similar project
participant requests. It tells how to simplify the application of
S/O models to optimization problems. It is especially useful
when designing under temporally stressful circumstances. The
project and this paper assume all desirable characteristics of
optimal solutions are represented in the optimization problem
being solved. Although the paper does not emphasize other
characteristics sometimes important in selecting a pumping strat-
egy or design, the same simplifications can apply for stochastic
optimization.

Optimization Design Procedure
Overview

The two-stage activities discussed are most beneficial when ad-
dressing large complex, and computationally intensive optimiza-

tion problems that require time-varying decision variable strategy
solutions, especially when parallel processing is not an option.
For such problems, forcing a transient optimizer to consider all
possible decision variables is inefficient—the number of possible
permutations becomes prohibitively large. The proposed proce-
dure employs modeler experience and tailored algorithms to
avoid permutations not needing simulation—greatly reducing
computation time. Table 1 lists the generic processes used in the
screening and transient optimization stages. Both stages employ
an innovative advanced GA having some TS capabilities (AGT),
discussed in the next subsection. The screening stage also uses a
new AGT subset/subspace decomposition optimization feature.
The transient optimization stage uses more AGT capabilities to
compute time-varying pumping rates and incorporates goal pro-
gramming to enhance design robustness.

AGT and Subset/Subspace Decomposition
Optimization Algorithms

A new AGT algorithm (Fig. 1) develops continuous domain time-
varying solutions for multiple stress periods and management pe-
riods simultaneously. AGT employs standard GA operations such
as parent selection, crossover, mutation, and advanced features
including elitism and healing. With elitism only the M best strat-
egies to date are used in the parent selection. Healing ensures that
a new pumping strategy created via crossover and mutation sat-
isfies decision variable-based constraints. AGT handles violation
of state variables constraints by adding penalties to the objective
function value proportional to the degree of constraint violation a
pumping strategy causes. AGT includes a threshold acceptance
features that forces the algorithm to only simulate a strategy hav-
ing an unpenalized objective function value that is at least a pre-
defined value better than the best objective function value to date.
This feature applies when the objective function is based solely
on decision variables.

AGT incorporates some TS capabilities to intensify search in
the solution space region that potentially yields superior strate-
gies, and to avoid regions that yield inferior results. TS remem-
bers the best strategies (or elite strategies) to date and develops
strategies in the neighborhood of the elite strategies by allowing
only elite strategies as parents and setting an upper limit on the
solution space size. Further, TS maintains a list of tabu (inferior)
strategies, and ensures that there is a minimum acceptable dis-
tance (search coarseness) between a newly developed strategy
and the tabu strategies. The AGT with subset/subspace decompo-
sition optimization is well suited for the two-stage procedure,
although other optimizers might be used.

The new subset/subspace decomposition optimization algo-
rithm is hereafter referred to as subset optimization (Fig. 2).
It prepares and contrasts optimal steady pumping strategies to
select desirable subsets of candidate wells for subsequent tran-
sient optimization. Subset optimization initially considers all de-
fined candidate well locations in the entire study area or in
selected subregions. To best explore the potentially very nonlinear
decision space, subset optimization employs AGT. After a speci-
fied number of generations, the algorithm ranks subsets based
on either the number of feasible strategies or best objective func-
tion (OF) values. Then it develops preliminary feasible and
optimal strategies for the first N-ranked subsets sequentially
(where N is a prespecified number). Subset optimization outputs
are N optimal strategies for N subsets of remediation well
combinations.
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Table 1. Overview of Screening and Transient Optimization Stages

Process action Output

Al. Analyze optimization problem
Al.1. Analyze modeled system (simulation model)
A1.2. Analyze objective function and its components

A1.3. Identify constraints/constraint locations, degree of
complexity, and contaminant hotspots
Al.4. Determine how decision spaces and variables affect

A1.5. Identify areas to which stimuli should not be applied

B1. Reduce effort needed to identify satisfactory system
B1.1. Combine simulated system components

B1.2. Reduce number of state variables needing evaluation
and comparison with bounds or constraints

B2. Reduce solution space (decision variable)

B2.1. Identify optimal stress periods of goal-achievements
B2.2. Use same stimulus value for a decision variable in

C1. Simulate within multiple subsets of decision

dimensions and steady stimuli strategies

C2. Evaluate each simulation based upon of value and

C3. Rank simulations based on penalized of value

D1. Select potential candidate decision variables locations

D2. Initialize optimizer with feasible strategies

D3. (a) Optimize decision variable values for multiple
subsets of decision dimensions. (b) Sequentially develop
preliminary feasible and optimal strategies for the first

Multiple subsets of
decision spaces and
decision variable values

Process
Screening A. Select preliminary sets of
(A-D) decision spaces
modeled system
B. Simplify optimization problem
stales (feasible solutions)
B1.3. Apply decomposition
dimensionality
different stress periods
C. Perform screening simulations
constraint violations
D. Perform subset/subspace
decomposition optimization and combinations
N-ranked subsets
Transient E. Employ optimizer

optimization

El. Initialize optimizer with feasible strategies

Optimal pumping strategy

E2. Optimize one subset of decision variables at a time

(E) E3. Perform a postoptimization sensitivity analysis

E4. Increase pumping strategy robustness (reoptimization):

E4.1. Tighten the optimization problem formulation
E4.2. Invoke goal programming in combination with the

More robust optimal
pumping strategy

primary objective function (multiobjective optimization)

Screening Stage

In this stage the modeler: (1) selects sets of decision space dimen-
sions or (in the context of this research) candidate well locations;
(2) assesses how to simplify the optimization; (3) employs screen-
ing simulation model(s) (Table 1); and (4) employs AGT subset
optimization to finalize subsets of candidate wells. To select de-
cision variable dimensions (candidate locations) one uses study
area and optimization problem formulation information (Table 1,
A1.1-A1.5). To reduce computational effort, and increase likeli-
hood of developing an optimal strategy, one uses simplification
concepts (Table 1, B1-B2). Simplification reduces the numbers of
individual constituent transport simulations performed, postsimu-
lation processing, and decision space dimensionality. Simplifica-
tion makes it easier for subsequent Processes C and D (Table 1) to
rule out inferior well locations and determine potentially good
candidate well locations.

Process Action B1 aims to make it easier to identify strategies
that yield solutions feasible with respect to state variables. Via
action B1.1, one considers simulating only indicator or composite
contaminants. This might be a lesser number than that for which
the transport simulator was calibrated.

For example, reasonably similar contaminants can be com-
bined into a composite plume that used weighting based on
cleanup standards. This requires normalizing the concentration of
each constituent to a representative concentration level of the sur-
rogate contaminant according to the ratio of the cleanup levels
(Geotrans 2002)

CL;
Cy= CuC—LE (1)

where C,=concentration of contaminant o; CLg=cleanup level
for surrogate contaminant (3, and CL,=cleanup level for contami-
nant o.
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Initialize AGT using pre-existing strategies
or generated strategies

]

Evaluate initial strategies’ objective
function values and fitnesses

1

_>LProceed to next AGT generation ]

i
Perform GA operations:

parent selection out of N best strategies to
date (with N equal to the generation size)
—> ¥
l crossover |
¥
L mutation I
S .

+

| healinvg ‘ —l

Does GA created strategy
satisfy TS criteria?

Simulate strategy and compute the
objective function value

Are AGT generation
ending criteria satisfied?

Are AGT stopping
criteria met?

Fig. 1. AGT flow chart

Action B1.2 urges the reader not to automatically use extrane-
ous variables, especially global concentration variables, to satisfy
curiosity. A global max concentration variable is the maximum
concentration that exists anywhere (in any and all cells) within a
specified zone (group of cells) at a particular time. Thus, although
only one state variable might be needed for a cleanup constraint,
determining that value requires much processing. On the other
hand, in hydraulic optimization, computing or constraining a head
value is trivial and very fast if superposition is used.

Action B.1.3 suggests reducing the number of needed trans-
port simulations by decomposition. Decomposition can be illus-
trated by a multiplume situation, in which the plumes can be
treated somewhat separately although by the same pump-and-
treat system. For example, one can begin by developing a reason-
ably optimal strategy to address a Contaminant Number 1,
and using that strategy near Contaminant 1 while then addressing
Contaminant Number 2. One does not simulate Contaminant 1
transport while initially addressing Contaminant 2. Only after a
good solution is obtained for Contaminant 2 might one also simu-
late transport of both contaminants during final optimization.

Process Action B2 aims to eliminate regions of the solution
(decision) space that will need to be searched during the transient
optimization stage. This reduces the number of strategies under
consideration. Action B2.1 suggests using experience and prelimi-
nary analyses to identify the particular times (stress periods) at

Initialize AGT using pre-existing strategies or
generated strategies, and evaluate fithesses
J

Start Subset Optimization?

(A) Evaluate and rank all strategies to date based
on: (i) objective function value; or (ii) number
of feasible strategies for each subset of wells;
or (iii) both

(B) Determine which and how many subsets are
optimized
!

Proceed to next AGT generation (and
perform AGT operations till generation
ending criteria are satisfied)

Is subset optimization
performed?

Are AGT subset stopping
criteria met?

Continue
optimization for [—
the next subset

Are all subsets
optimized?

Fig. 2. Subset optimization flow chart

which optimization goals are best achieved. For example, assume
a situation in which one seeks to minimize the present value cost
of achieving cleanup by the end of period four. Assume one can
determine, from input cost and other data, that the minimal
cleanup cost will occur by achieving cleanup during period three.
In that case, Action B2.1 suggests that one allow the optimization
algorithm to consider only such strategies by imposing a cleanup
constraint on period three, and omitting the cleanup constraint for
other stress periods. One will not allow the optimizer algorithm to
consider strategies that achieve cleanup in preceding stress peri-
ods, and one would simulate only three periods, not four. In ef-
fect, one performs preliminary simulations and evaluations to
determine the time at which one a constraint should be optimally
satisfied, and then adds or changes constraint(s) to the initially
posed optimization problem to assure that occurs. The intent is
that adding such constraints reduces optimizer search efforts in a
potentially very nonlinear solution space.

Action B.2.2 urges reducing decision space dimensionality by
forcing strategies from multiple periods to have the same values.
For a six period problem, for example, one can force the first four
periods to employ the same decision variable values, and the last
two periods to use different values. Usually one allows rates to
change when system state changes occur. For example, in a mul-
tiwell distributed plume cleanup problem, one might employ
steady pumping rates in all periods until cleanup is achieved in
part of the plume, but one would allow rates to change in subse-
quent periods. Such constraints might be different during the
screening and transport optimization stages.
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Process C (Table 1) employs a screening simulation module
that: (1) simulates multiple subsets of predefined well locations
and steady pumping strategies; (2) evaluates each strategy/
simulation based on the OF value and constraint violations; and
(3) ranks simulations based on penalized OF value.

Process D (Table 1) emphasizes subset optimization. Based on
previous analysis and simulations, AGT receives feasible solu-
tions for selected candidate well location subsets. AGT optimiza-
tion yields the N best subsets of remediation wells.

Because Table 1 activities and processes can be interrelated,
for a particular optimization problem formulation, they might be
performed simultaneously and/or sequentially. Recommendations
are adaptable to parallel processing situations.

Transient Optimization Stage

The transient optimization stage (process E in Table 1) follows
the screening stage. Transient optimization’s main output is the
optimal pumping strategy (resulting from the best subset of can-
didate well locations). This stage begins by using the candidate
wells and feasible pumping strategies developed during the
screening stage. It can use different subsets of candidate wells in
different optimization runs. If time is available, one can perform
AGT optimization for each of the N best subsets of wells resulting
from subset optimization in the screening stage. If time is limited,
one might perform AGT only for the best subset of wells.

Beginning with good feasible solutions greatly reduces the
number of simulations needed to obtain refined optimal strategies.
In essence, during the screening stage one employs experience
and practical knowledge to simplify the problem that the opti-
mizer must solve, and speed solution during the transient optimi-
zation stage. A variety of optimization algorithms can be used to
develop optimal transient solutions after candidate wells are se-
lected and feasible strategies are created. Guidance concerning
transient optimizer selection is beyond the scope of this paper.

Ideally a developed optimal strategy is also robust—i.e., it will
satisfy constraints and achieve specified goals in the field, even if
the field physical system differs somewhat from the assumed
model system. However, a computed optimal strategy might not
be robust if the stochastic nature of aquifer parameters is not
incorporated within the optimization. Stochastic optimization is
infrequently used because data are usually not available to de-
velop the reasonable probability density functions or realizations
that stochastic optimization needs.

One way to increase strategy robustness is to tighten the opti-
mization problem formulation—causing the optimizer to try to
achieve lower concentrations in model cleanup and exclusion
zones than are actually required in the field. This approach, used
here, employs multiobjective optimization by coupling concentra-
tion goal programming with the original objective function.

Application and Results

NAD Study Area and Optimization Problem
Formulations

Blaine NAD is located east of Hastings, Neb. NAD was placed on
the Environmental Protection Agency’s national priority list in
1986 due to groundwater contamination. NAD has significant
groundwater contamination by volatile hydrocarbons and explo-
sives from solid waste and explosives disposal and wastewater
discharge (Geotrans 2002). There is currently no pump-and-treat
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system installed at NAD. Selected NAD characteristics and model
features are presented in Table 2. Groundwater flow and solute
transport are simulated employing a modular finite-difference
groundwater flow model, MODFLOW (McDonald and Harbaugh
1988) and a modular three-dimensional transport model,
MT3DMS (Zheng and Wang 1998). The MT3DMS transport
model is designed for simulating TNT and TCE transport in lay-
ers 1-5. Layer 6 has no contamination. During the nonirrigation
season flow is predominantly to the east and southeast with an
average hydraulic gradient of 0.001. Irrigation season pumping
alters groundwater flow directions significantly horizontally and
vertically. Individual cones of depression around irrigation wells
caused many small capture zones to be formed. Initial TCE and

TNT plumes are presented in Figs. 3 and 4, respectively.
The Formulation 1 goal is to minimize cost of containing and
remediating TCE and TNT plumes within 30 years. The cost OF

is (Geotrans 2002) Minimize

Z=(CCE + CCT + CCD + FCM + FCS + VCE + VCT + VCD)

(2)

Subject to
Table 2. NAD Characteristics and Model Features
NAD characteristics/model features Value
NAD area (km?) 197.5
Model area (km?) 357
Hydrogeological units’ thickness™®
Unconfined aquifer (m) 3-5
Upper confining layer (m) 0.3-0.9
Semiconfined aquifer (m) 30-46
Model discretization

e Number of layers 6

¢ Number of rows 82

¢ Number of columns 136

e Minimum cell size (m X m) 122X 122

e Maximum cell size (m X m) 610X 610
Hydraulic conductivity (K) range (m/day)

* Unconfined Aq. (Layer 1) 3-24

» Upper confining layer (Layer 2) 0.0006-0.2

* Semiconfined Ag. (Layers 3-6) 46-76

Vertical K range (m/day)
e From Layer 1 to Layer 2

0.0001-0.0015

e From Layer 2 to Layer 3 0.0001-0.059

* Between semiconfined aquifers 4.6-7.8
Number of stress periods (SPs) 60
Duration odd numbered SPs® 76
Duration even numbered SPs’ 289
Planning horizon (years) 30
Number of management periods (MPs) 6
Duration one MP (years) 5 (10 SPs)
Number of irrigation wells in model 951
Combined TCE and TNT plume length (km) 12.2

*From the ground surface downwards.

b . . . .
The unconfined and upper confined are discontinuous in some portions

of the study area.
“Corresponds with the irrigation season.

dCoincides with the nonirrigation season.
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Table 3. Cost OF Components and Values

Cost Value
components Description (X1000)
CCE Capital cost of new extraction wells ($) 400
CCT Capital cost of contaminated water treatment 5.72
facility ($/m>/day)

CCD Capital cost of discharge piping ($/m3/day) 8.18
FCM Fixed operation and management cost ($/year) 115
FCS Fixed sampling and analysis cost ($/year) 300
VCE Variable cost of well operations ($/m>/day) 0.25
VCT Variable cost of treatment ($/m>/day) 1.54
VCD Variable cost of discharge ($/m3/day) 0.36

Note: A 3.5% discounting rate is used for each component to compute the
present value of the OF value.

Conc,, < Concg&, (3)

where cost components of Eq. (2) are detailed in Table 3;
Conc, , ,/=maximum concentration for species s in zone z at time
t. U=upper bound on the state variable. The cleanup goal for
TCE and TNT is 5 parts per billion (ppb) and 2.8 ppb, respec-
tively. This must be achieved within 30 years in all cells within
the cleanup zones (Figs. 3 and 4). In this example the contami-
nation must be kept within the containment zone, so cleanup zone
and containment zone are synonymous. Concentration cannot ex-
ceed 5 and 2.8 ppb in the exclusion zones for TCE and TNT
(Figs. 3 and 4). Both constraints are evaluated at the end of every
management period (MP). Table 4 lists additional constraints and
characteristics of the NAD strategy development process.
Although NAD personnel participated in posing all three
optimization problem formulations, environmental regulators
might or might not agree with the formulations. Some regulators
might oppose including economic discounting that can favor
slowing remediation. Because public funds would be used for

Table 4. Additional NAD Optimization Constraints and Characteristics

Number Constraints/characteristics

1 Wells can only be added and pumping rates can only be
changed at the beginning of modeling Years 1, 6, 11, 6, 21,
and 26.

2 Upper bounds on pumping from wells screened in one, two, or

three layers are 22.1 L/s (350 gpm), 44.2 L/s (700 gpm), and
66.2 L/s (1,050 gpm), respectively.

3 No remediation wells are allowed in specified restricted areas
of Layer 6, and in cells with irrigation wells (Figs. 3 and 4).

4 No cell should go dry® (i.e., have zero saturated thickness).

5 Upper limit on number of remediation wells is 25 (only for
Formulation 3).

6 The 30-year planning period is discretized into six 5-year
management periods (MPs), and 60 simulation model stress
periods (SPs).

7 Input data includes 60 SPs of time-varying background
irrigation pumping rates, that are not subject to optimization.

8 To be optimized are timing and installation of extraction wells
and pumping rates for each 5-year MP.

9 Layers 1 and 2 are excluded from optimization due to high
uncertainty in contaminant concentrations.

*This constraint is added because the MT3DMS transport code could not
numerically handle dry cells.
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Table 5. Optimization Results for Formulations 1-3

Total Total Improvement from
Number of TCE TNT pumping pumping trial-and-error
OF OF remediation cleanup cleanup range range approach
Formulation (million $) (L/s) wells (years) (years) (L/s) (gpm) (%)
1 40.8 — 10 30 29 156.8-213.1 2,486-3,378 19
2 18.9 — 10 30 29 156.8-213.1 2,486-3,378 33
3 — 134.9 25 n.a. n.a. 134.3-134.9 2,129-2,139 26

o

n.a.=not available.

remediation, other regulators might consider it desirable to ex-
pend as few funds as needed to appropriately satisfy environmen-
tal regulations.

Formulation 2 has the same OF and constraints as Formulation
1 except that it assumes diversion of 151.4 L/s (2,400 gal/min)
of extracted water. This rate is therefore omitted from the treat-
ment or discharge cost:

If (Qpax =< 157.7 L/s) then CCT =0

If (Qpmax > 157.7 L/s) then CCT = 1. 0* [Qyax — 151.4 L/s]
4)

where Oyax=maximum total flow of water extracted by reme-
diation wells in any MP.

The Formulation 3 goal is to minimize the maximum total
remediation pumping rate in any management period of a 30-year
simulation (min-max OF)

min(Q,,.) (5)

Formulation 3 includes the same constraints as Formulation 1
(Table 4), except that the cleanup constraint does not apply here,
and limits the maximum number of new remediation wells to 25.

Formulation 1

Screening Stage

To attempt to reduce temporal dimensionality, we reviewed the
optimization problem formulation and effect of discounting. This
indicated that one should delay well installation and pumping to
the extent practical, i.e., achieve cleanup as close to Year 30 as
possible. Hence we only made 30-year simulations.

Reducing the number of state variables needing evaluation
when each strategy is tested involved two steps. First, Geotrans
(2002) used the previously mentioned weighting procedure to
combine TCE, 1,1-dichloroethene (DCE), and Royal Demolition
Explosive (RDX) into composite TCE-dominated plumes (Fig. 3).
Then, noting that the TNT plume (Fig. 4) was much smaller than
the TCE plumes, our initial strategy design simulations only ad-
dressed the TNT plume. These determined that the TNT plume
could be contained and remediated by installing one or two wells.
Thereafter, during screening, one well pumped at a fixed rate
within the TNT plume, and only TCE transport was simulated and
addressed. This reduced the time required for a single 30-year
flow and transport simulation by about 28%, (from 50 to 36 min
on a 1.8 GHz hertz Pentium 4 central processor unit).

To attempt to reduce decision variable dimensionality, we
noted that the cost of installing one well was relatively large
compared with pumping cost. Thus, one would want to install as
few wells as possible, even if adding a well could reduce total
pumping slightly.

We took several approaches to develop sets of good candidate
well locations for both the western main TCE plume, and the
eastern small TCE plume. First we placed candidate wells at lead-
ing edges of the TCE plumes to achieve plume containment. Then
we added candidate wells in high concentration areas to satisfy
cleanup constraints, and modified both sets of positions to reduce
the number of wells needed. This included installing a well in
Year 20 in the northeastern part of the main TCE plume to reme-
diate contamination entering Layer 3 from Layer 2.

Because most western main TCE plume contamination was in
Layers 3 and 4, candidate wells would extract from those layers.
Wells were not needed in Layer 5, because Layer 5 contamination
was removed by nearby wells drawing from Layers 3 and 4. Most
eastern small TCE plume contamination is in Layer 3. Candidate
wells in most of this plume only extract from Layer 3. Only in the
northern part of the eastern small TCE plume does a candidate
well need to extract from both Layers 3 and 4.

En toto, screening involved over 200 30-year simulations
using steady pumping. Subset optimization helped finalize reme-
diation well locations in the small TCE plume. Time was not
available to perform subset optimization for candidate wells in the
main TCE plume.

Transient Optimization Stage

Transient optimization was performed for one subset of candidate
remediation well locations. The AGT optimizer was set to de-
velop up to 800 strategies (100 generations with eight simulations
per generation), and to perform flow and transport simulation for
each. One can assume that optimizing for only one subset requires
only half as many simulations as optimizing for two subsets.

AGT transient optimization was initialized with a feasible
steady pumping strategy having an OF value of $48.7 million.
During this stage, TCE transport was always simulated, but TNT
was generally not. The candidate well within the TNT plume
pumped at rates within bounds that assured satisfying TNT
cleanup and containment constraints.

AGT gradually converges to a least-cost transient pumping
strategy OF value of $40.8 million. The AGT optimizer was not
able to improve the OF value further because of the tightness of
the TCE maximum concentrations to their upper bounds. For ex-
ample, maximum TCE concentrations are 4.98 and 4.97 ppb
within exclusion zones at the end of 5 and 25 years, respectively.
The maximum TCE cleanup zone concentration is 4.99 ppb at the
end of Year 30. Table 5 has additional strategy details. Because of
economic discounting, optimization tends to increase total period
pumping rate with time. For the optimal strategy, Fig. 5 shows the
candidate well locations and TCE concentrations greater than
5 ppb after 25 years for Layers 3-5. For the optimal strategy,
Fig. 6 shows the well locations and TNT concentrations greater
than 2.8 ppb after 25 years for Layer 3.
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The optimal Formulation 1 strategy is 19% less costly than the
strategy simultaneously developed by an experienced consultant
using the traditional trial-and-error approach (Becker et al. 2006).
This computed optimal pumping strategy might be globally opti-
mal for the employed wells, but it is not robust. Sensitivity analy-
sis showed that increasing or decreasing hydraulic conductivity
(K) array values (using global multipliers as small as = 1.00%)
causes infeasible solutions.

To create a strategy more robust for conductivity, we em-
ployed an alternative multiobjective optimization problem (For-
mulation 1b). The Formulation 1b objective function seeks to
bring TCE maximum concentration values below 4.5 ppb (instead
of 5 ppb) while minimizing the remediation cost (multiobjective
optimization). The optimal result of this exercise yields a cost of
$46.5 million (a 13.8% increase) and a robustness range of
—5-9% (K-array multiplication factors of 0.95 and 1.09, respec-
tively). Fig. 7 contrasts robustness of strategies developed using
Formulations 1 and 1b, and illustrates the robustness of interme-
diate Formulation 1b optimization run strategies.

Fig. 7 demonstrates a common phenomenon—increasing ro-
bustness degrades achievement of the primary objective function
goal. Here, as the maximum concentration goal is lowered, ro-
bustness increases, but total remediation cost increases. More
pumping is needed to reduce the maximum concentration values.
It costs $5.7 million to obtain a 14% robustness range.
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concentrations >2.8 ppb after 25 years in Layer 3

Both the flow and transport simulation models contain many
parameters that can be quite stochastic. For all formulations,
mathematical optimization will cause cleanup and containment
constraints to be tight. Changes in assumed model parameters that
cause a contaminant to move more quickly or more slowly or
affect concentrations within the model, can cause such constraints
to be violated when a strategy developed using unaltered param-
eters is tested for altered parameters. Thus, in addition to changes
in hydraulic conductivity, computed optimal strategies can be sen-
sitive with respect to changes in assumed effective porosity, dis-
persivity, partitioning coefficient, half life, and other parameters.
In design practice, sensitivity analysis includes as many as appro-
priate, but usually, only one parameter is changed at a time.

Formulation 2

Analyzing the OF components for Formulations 1 and 2 revealed
that the optimal strategy for Formulation 1 would also be optimal
for Formulation 2—diverting up to 151.4 L/s of extracted water
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Fig. 7. Robustness of optimal strategies for Formulations 1 and 1b
and of intermediate strategies

JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT © ASCE / SEPTEMBER/OCTOBER 2008 / 429



from the treatment train would significantly reduce cost but would
not affect well locations and pumping rates of an optimal strategy.
Therefore, we assumed that the optimal strategy for Formulation
1 is also optimal for Formulation 2 and did not perform additional
screening, optimization, or sensitivity analysis for Formulation 2.
Table 5 summarizes the results.

Formulation 3

Screening Stage

The screening stage for Formulation 3 was performed simulta-
neously with that for Formulation 1. Formulation 3 differs in:
using a mini-max flow objective function, omitting cleanup con-
straints; and allowing up to 25 remediation wells. Because using
25 wells is a more relaxed optimization problem than using fewer
wells, and cost was not to be considered, we automatically al-
lowed 25 wells. Screening for Formulation 3 involves placing
candidate wells close enough to the leading edge of the TCE
plumes that they can capture it. Therefore many of the wells were
positioned in lines nearly parallel to containment zone bound-
aries. No effort was made to reduce the number of wells because
that could potentially adversely affect the objective function value
(by potentially causing pumping to increase). For this problem
posed in collaboration with the Blaine facility for ESTCP demon-
stration, obtaining the best objective function value we could for
a feasible solution within time constraints was the goal. Because
some employed candidate pumping wells were in cells adjacent to
each other, probably fewer pumping wells could be used without
significantly increasing (harming) the objective function value.
There was no time or need to test that view.

Transient Optimization Stage

During transient optimization, AGT is employed for 1,200 simu-
lations (150 generations with eight simulations per generation).
During optimization only TCE transport was simulated. As in
Formulation 1, the candidate well within the TNT plume pumped
at rates within bounds that assured satisfying TNT cleanup and
containment constraints.

Transient optimization is performed for one subset of candi-
date remediation well locations. It was simplified by optimizing
steady pumping rates for the first five management periods, and
optimizing different rates for the final period. Thus transient op-
timization only needed to compute two optimal rates for each
well instead of six (six are needed if one allows a different rate
for each MP). This reduced processing time of an optimization
run by about 80%.

The AGT converges to a Formulation 3 OF value of
134.95 L/s (2,139 gal/min). Table 5 summarizes the results. The
exclusion zone constraints are tight to the upper bounds at the end
of Years 5, 20, and 25, with TCE maximum concentration values
of 4.99, 4.99, and 4.98 ppb, respectively.

Sensitivity analysis revealed that reducing K-array values by
as much as 35% (a K-array multiplication factor of 0.65) yields
feasible strategies. Increasing K-array values always caused infea-
sible solutions—concentrations exceeding maximum concentra-
tion level occurred outside the containment zone (i.e., within the
exclusion zone).

Summary and Conclusions

In real-world practice, time and money constraints restrict how
much effort one can expend on a design. Designing well systems

and pumping strategies for managing large complex contaminant

plumes can be aided by transport optimization software. How-

ever, to obtain reasonably optimal solutions for large complicated
design problems, one should use the software carefully.

One wants to intelligently reduce the size of the solution space
being explored by the heuristic optimizer. Such a reduction in-
creases the chances that the optimizer will obtain close to a glo-
bally optimal solution. Without such a reduction, the optimizer
will unnecessarily explore much solution space. Reducing the size
of the solution space can be accomplished in several ways.

Here we propose a two-stage process for designing optimal
pump-and-treat systems and pumping strategies. The screening
stage involves steady pumping simulations and optimizations. It
selects candidate pumping wells and develops feasible pumping
strategies to initiate the subsequent transient optimization stage.
Within the screening stage one employs professional experience
and judgment to reduce problem solution space and computer
processing time. Basically one tries to minimize state variables
considered and decision dimensions and variables. Stated differ-
ently, in the screening stage, one tries to:

1. Reduce the temporal dimensionality of the solution space. In
our application during the optimization stage we only need to
optimize strategies that will pump for all six management
periods (MPs)—we will not optimize strategies that achieve
cleanup and containment in fewer than six MPs. Several trial
simulations were performed to conclude that increasing well
numbers and pumping rates early in the management period
would not speed cleanup sufficiently to offset the increased
cost;

2. Reduce the decision variable dimensionality of the solution
space. Experience identifies subsets of wells that should yield
reasonably good feasible solutions. From those, subset opti-
mization selects the best subsets of candidate wells, and de-
velops feasible solutions (pumping strategies);

3. Reduce the number of state variables needing evaluation and
comparison with constraints. We identify a well location and
minimum pumping rate that is adequate for managing one
contaminant species (TNT). We subsequently generally only
simulate the other species (TCE) during the transient optimi-
zation stage, reducing the simulation time needed to evaluate
a single strategy by about 30%. This is a decomposition tech-
nique; and

4. Reduce the number of simulations needed to get obtain a
reasonably optimal strategy. We develop an initial feasible
solution for each subset of candidate wells that we provide to
the optimizer. During the transient optimization stage the op-
timizer does not waste time in trying to develop a (first)
strategy that satisfies all constraints.

In essence, we use experience and practical knowledge to sim-

plify and focus the problem that we pass to the transient optimi-

zation stage.

The transient optimization stage begins by developing optimal
strategies for the subsets of candidate wells selected in the screen-
ing stage. It employs the AGT, a new optimizer that couples ad-
vanced GA with some TS capabilities and employs subset/
subspace decomposition optimization, to significantly reduce
solution space size and simulation numbers. The AGT computes a
mathematically optimal time-varying pumping strategy for the
best subset of wells. Of course, one can further change candidate
well locations if indicated.

Postoptimization sensitivity analysis for the hydraulic conduc-
tivity parameter shows that Formulation 1-3 optimal results are
not robust, because of the tightness of final predicted TCE con-
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centrations to their upper bounds. An alternative optimization
problem formulation (Formulation 1 plus goal programming)
sought to bring maximum TCE concentrations below 4.5 ppb
while minimizing remediation cost. The resulting optimal strategy
is more robust (robustness range of —5%-9%), but the primary
objective function value increases 13.8%.

In conclusion, heuristic optimization is a powerful tool for
plume remediation design, and can yield significant benefits
(>19% improvement compared to a normal trial-and-error ap-
proach). However, if deadlines are important and tight, and for
complicated problems that have long simulation run time, one
should try to reduce the computational effort of formal optimiza-
tion. The modeler’s experience and logic is invaluable for doing
this, especially in the screening stage that precedes optimization.
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